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Abstract
The long-range Fröhlich electron–phonon interaction has been identified as
the most essential for pairing in high-temperature superconductors owing to
poor screening, as is now confirmed by optical, isotope substitution, recent
photoemission and some other measurements. I argue that low-energy physics
in cuprate superconductors is that of superlight small bipolarons, which
are real-space hole pairs dressed by phonons in doped charge-transfer Mott
insulators. They are itinerant quasiparticles existing in the Bloch states at low
temperatures as also confirmed by the continuous-time quantum Monte–Carlo
algorithm (CTQMC) fully taking into account realistic Coulomb and long-range
Fröhlich interactions. Here I suggest that a parameter-free evaluation of Tc,
unusual upper critical fields, the normal state Nernst effect, diamagnetism,
the Hall–Lorenz numbers and giant proximity effects strongly support the
three-dimensional (3D) Bose–Einstein condensation (BEC) of mobile small
bipolarons with zero off-diagonal order parameter above the resistive critical
temperature Tc at variance with phase fluctuation scenarios of cuprates.

(Some figures in this article are in colour only in the electronic version)

1. Introduction: essential pairing interaction in cuprates

Although high-temperature superconductivity (HTS) has not yet been targeted as ‘the shame
and despair of theoretical physics’—a label attributed to low-temperature superconductivity
during the first half-century after its discovery—controversy of current theoretical constructions
has led many researchers to say that there is no theory of HTS and no progress in understanding
the phenomenon. A significant fraction of theoretical research in the field has suggested that
the interaction in novel superconductors is essentially repulsive and unretarded, and it could
provide high Tc without phonons. Indeed strong onsite repulsive correlations (Hubbard U )
are essential in shaping the insulating state of undoped (parent) compounds. Different from
conventional band-structure insulators with completely filled and empty Bloch bands, the Mott
insulator arises from a potentially metallic half-filled band as a result of the Coulomb blockade
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Figure 1. DOS in cuprates. The chemical potential μ is inside the charge transfer gap as observed
in the tunnelling experiments [7] because of bipolaron formation [3]. It could enter the oxygen band
in overdoped cuprates, if bipolarons coexist with unpaired degenerate polarons [8].

of electron tunnelling to neighbouring sites [1]. However, the Hubbard U model shares an
inherent difficulty in determining the order when the Mott–Hubbard insulator is doped. While
some groups have claimed that it describes high-Tc superconductivity at finite doping, other
authors could not find any superconducting instability. Therefore it has been concluded that
models of this kind are highly conflicting and confuse the issue by exaggerating the magnetism
rather than clarifying it [2].

Here I discuss a multi-polaron approach to the problem based on the bipolaronic extension
of the BCS theory to the strong-coupling regime [3]. Attractive electron correlations,
prerequisite to any superconductivity, are caused by an almost unretarded electron–phonon
(e–ph) interaction sufficient to overcome the direct Coulomb repulsion in this regime. Low-
energy physics is that of small polarons and bipolarons, which are real-space electron
(hole) pairs dressed by phonons. They are itinerant quasiparticles existing in the Bloch
states at temperatures below the characteristic phonon frequency. Since there is almost no
retardation (i.e. no Tolmachev–Morel–Anderson logarithm) reducing the Coulomb repulsion,
e–ph interactions should be relatively strong to overcome the direct Coulomb repulsion, so
carriers must be polaronic to form pairs in novel superconductors.

In our approach to cuprate superconductors we take the view that cuprates and related
transition metal oxides are charge-transfer Mott–Hubbard insulators at any relevant level of
doping [3]. The one-particle density-of-states (DOS) of cuprates is schematically represented
by figure 1, as it has been established in a number of site-selective experiments [4] and in
the first-principle numerical (‘LDA + U ’) [5] and semi-analytical cluster [6] band structure
calculations properly taking into account the strong on-site repulsion.

Here the d-band of the transition metal (Cu) is split into the lower and upper Hubbard
bands by the on-site repulsive interaction U , while the first band to be doped is an oxygen band
within the Hubbard gap. The oxygen band is completely filled in parent insulators, and doped
p-holes interact with phonons and with spin fluctuations of d-band electrons. A characteristic
magnetic interaction, which could be responsible for pairing, is the spin–exchange interaction,
J = 4t2/U , of the order of 0.1 eV (here t is the hopping integral). On the other hand, a simple
parameter-free estimate of the Fröhlich electron–phonon interaction (routinely neglected within
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the Hubbard U and/or t–J approach) yields the effective attraction as high as 1 eV [3].
This estimate is obtained using the familiar expression for the polaron level shift, Ep, the
high-frequency, ε∞, and the static, ε0, dielectric constants of the host insulator, measured
experimentally [9],

Ep = 1

2κ

∫
B Z

d3q

(2π)3
4πe2

q2
, (1)

where κ−1 = ε−1∞ − ε−1
0 and the size of the integration region is the Brillouin zone (BZ). Since

ε∞ = 5 and ε0 = 30 in La2CuO4 one obtains Ep = 0.65 eV. Hence the attraction, which
is about 2Ep, induced by the long-range lattice deformation in parent cuprates is one order of
magnitude larger than the exchange magnetic interaction. There is virtually no screening of e–
ph interactions with c-axis polarized optical phonons in doped cuprates because the upper limit
for an out-of-plane plasmon frequency (<200 cm−1) [10] is well below characteristic phonon
frequencies, ω ≈ 400–1000 cm−1. Hence the Fröhlich interaction remains the most essential
pairing interaction at any doping.

Further compelling evidence for the strong e–ph interaction has come from isotope
effects [11], more recent high-resolution angle-resolved photoemission spectroscopies
(ARPES) [12], and a number of earlier optical [13–16] and neutron-scattering [17] studies
of cuprates. The strong coupling with optical phonons, unambiguously established in all
high-temperature superconductors, transforms holes into lattice mobile polarons and mobile
superconducting bipolarons as has been proposed [18, 19] prior the discovery [20, 21].

When the e–ph interaction binds holes into intersite oxygen bipolarons [3], the chemical
potential remains pinned inside the charge transfer gap. It is found at a half of the bipolaron
binding energy, figure 1, above the oxygen band edge shifted by the polaron level shift
Ep, as clearly observed in the tunnelling experiments by Bozovic et al in optimally doped
La1.85Sr0.15CuO4 [7]. The bipolaron binding energy as well as the singlet–triplet bipolaron
exchange energy (section 3) are thought to be the origin of normal state charge and spin
pseudogaps, respectively, as has been proposed by us [22] and later found experimentally [23].
In overdoped samples carriers screen part of the e–ph interaction with low-frequency phonons.
Hence, the bipolaron binding energy decreases [24] and the hole bandwidth increases with
doping. As a result, the chemical potential could enter the oxygen band in overdoped
samples because of an overlap of the bipolaron and polaron bands, so a Fermi-level crossing
could be seen in ARPES at overdoping where mobile bipolarons coexist with degenerate
polarons [8].

2. The ‘Fröhlich–Coulomb’ model (FCM)

2.1. Canonically transformed Hamiltonian

Experimental facts tell us that any realistic description of high-temperature superconductivity
should treat the long-range Coulomb and unscreened e–ph interactions on an equal footing. In
the past decade we have developed a ‘Fröhlich–Coulomb’ model (FCM) [3, 25, 26] to deal with
the strong long-range Coulomb and the strong long-range e–ph interactions in cuprates and
other related compounds. The model Hamiltonian explicitly includes a long-range electron–
phonon and the Coulomb interactions as well as the kinetic and deformation energies. The
implicitly present large Hubbard U term prohibits double occupancy and removes the need
to distinguish fermionic spins since the exchange interaction is negligible compared with the
direct Coulomb and the electron–phonon interactions.
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Introducing fermionic, cn, and phononic, dmα, operators, the Hamiltonian of the model is
written as

H = −
∑
n �=n′

[
T (n − n′)c†

ncn′ − Vc(n − n′)c†
ncnc†

n′cn′
]

−
∑
α,nm

ωαgα(m − n)(eα · um−n)c
†
ncn(d

†
mα + dmα)

+
∑
mα

ωα
(
d†

mαdmα + 1/2
)
, (2)

where T (n) is the hopping integral in a rigid lattice, eα is the polarization vector of the αth
vibration coordinate, um−n ≡ (m − n)/|m − n| is the unit vector in the direction from electron
n to ion m, gα(m − n) is the dimensionless e–ph coupling function, and Vc(n − n′) is the
inter-site Coulomb repulsion. gα(m − n) is proportional to the force fm(n) acting between the
electron on site n and the ion on m. For simplicity, we assume that all the phonon modes are
non-dispersive with the frequency ωα . We also use h̄ = kB = c = 1.

The phonon frequency dispersion can be readily included in the definition of all essential
physical quantities such as the polaron level shift, mass and the polaron–polaron interaction
using the quasi-momentum representation for phonons [3]. Generally it leads to a lighter
polaron compared with the non-dispersive approximation. For example, comprehensive studies
of the molecular Holstein model, in which the dispersive features of the phonon spectrum are
taken into account, found much lower values of the polaron mass compared with the non-
dispersive model [27].

If the electron–phonon interaction is strong, i.e. the conventional e–ph coupling constant
of the BCS theory is large, λ > 1, then the weak-coupling BCS [28] and the intermediate-
coupling Migdal–Eliashberg [29, 30] approaches cannot be applied [31]. Nevertheless the
Hamiltonian, equation (2), can be solved analytically using the ‘1/λ’ multi-polaron expansion
technique [3], if λ = Ep/zT (a) > 1. Here the polaron level shift is

Ep =
∑
nα

ωαg2
α(n)(eα · un)

2, (3)

and zT (a) is about the half-bandwidth in a rigid lattice. The model shows a rich phase diagram
depending on the ratio of the inter-site Coulomb repulsion Vc and the polaron level shift Ep [26].
The ground state of the FCM is a polaronic Fermi liquid when the Coulomb repulsion is large,
a bipolaronic high-temperature superconductor at intermediate Coulomb repulsions, and a
charge-segregated insulator if the repulsion is weak. The FCM predicts superlight polarons and
bipolarons in cuprates with a remarkably high superconducting critical temperature. Cuprate
bipolarons are relatively light because they are inter-site rather than on-site pairs due to the
strong on-site repulsion, and because mainly c-axis polarized optical phonons are responsible
for the in-plane mass renormalization. The relatively small mass renormalization of polaronic
and bipolaronic carries in the FCM has been confirmed numerically using the exact Quantum
Monte Carlo (QMC) [32, 33], cluster diagonalization [34] and variational [35] algorithms.

The ‘1/λ’ expansion technique is based on the fact, known for a long time, that there is
an analytical exact solution of a single polaron problem in the strong-coupling limit λ → ∞.
Following Lang and Firsov [36] we apply the canonical transformation eS diagonalizing the
Hamiltonian, equation (2). The diagonalization is exact, if T (m) = 0 (or λ = ∞). In the
Wannier representation for electrons and phonons,

S =
∑

m �=n,α

gα(m − n)(eα · um−n)c
†
ncn(d

†
mα − dmα).

4



J. Phys.: Condens. Matter 19 (2007) 125216 A S Alexandrov

The transformed Hamiltonian is

H̃ = e−SHeS = −
∑
n �=n′

σ̂nn′ c†
ncn′ + ω

∑
mα

(
d†

mαdmα + 1
2

)

+
∑
n �=n′

v(n − n′)c†
ncnc†

n′ cn′ − Ep

∑
n

c†
ncn, (4)

where for simplicity we take ωα = ω. The last term describes the energy gained by polarons
due to the e–ph interaction. The third term on the right-hand side is the polaron–polaron
interaction,

v(n − n′) = Vc(n − n′)− Vph(n − n′), (5)

where

Vph(n − n′) = 2ω
∑
m,α

gα(m − n)gα(m − n′)(eα · um−n)(eα · um−n′).

The phonon-induced interaction Vph is due to displacements of common ions caused by two
electrons. Finally, the transformed hopping operator σ̂nn′ is given by

σ̂nn′ = T (n − n′) exp

[∑
m,α

[
gα(m − n)(eα · um−n)− gα(m − n′)(eα · um−n′)

]
(d†

mα − dmα)

]
.

(6)

This term is a perturbation at large λ. It accounts for the polaron and bipolaron tunnelling
and high-temperature superconductivity [3]. In particular crystal structures like perovskites, a
bipolaron tunnelling could appear already in the first order in T (n) (see below), so that σ̂nn′ can
be averaged over phonon vacuum, if the temperature is low enough, T � ω. The result is

t (n − n′) ≡ 〈〈
σ̂nn′

〉〉
ph

= T (n − n′) exp[−g2(n − n′)], (7)

where

g2(n − n′) =
∑
m,α

gα(m − n)(eα · um−n)
[
gα(m − n)(eα · um−n)− gα(m − n′)(eα · um−n′)

]
.

By comparing equation (7) and equations (3), (5) the bandwidth renormalization exponent can
be expressed via Ep and Vph as follows:

g2(n − n′) = 1

ω

[
Ep − 1

2
Vph(n − n′)

]
. (8)

In zero order with respect to the hopping, the Hamiltonian, equation (4) describes localized
polarons and independent phonons, which are vibrations of ions around new equilibrium
positions depending on the polaron occupation numbers. The phonon frequencies remain
unchanged in this limit. The middle of the electron band falls by the polaron level-shift Ep

due to a potential well created by lattice deformation. The finite hopping term leads to the
polaron tunnelling because of degeneracy of the zero-order Hamiltonian with respect to site
positions of the polaron.

2.2. Superlight small bipolarons in the FCM: root to room temperature superconductivity

Now let us consider in-plane bipolarons in a two-dimensional lattice of ideal octahedra that
can be regarded as a simplified model of the copper–oxygen perovskite layer, figure 2 [26].
The lattice period is a = 1 and the distance between the apical sites and the central plane is
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Figure 2. Simplified model of the copper–oxygen perovskite layer [26].

h = a/2 = 0.5. For mathematical transparency we assume that all in-plane atoms, both copper
and oxygen, are static but apex oxygens are independent three-dimensional isotropic harmonic
oscillators.

Due to poor screening, the hole–apex interaction is purely Coulombic,

gα(m − n) = κα

|m − n|2 ,

where α = x, y, z. To account for the experimental fact that z-polarized phonons couple to
the holes more strongly than others [16], we choose κx = κy = κz/

√
2. The direct hole–hole

repulsion is

Vc(n − n′) = Vc√
2|n − n′|

so that the repulsion between two holes in the nearest neighbour (NN) configuration is Vc.
We also include the bare NN hopping TNN, the next nearest neighbour (NNN) hopping across
copper TNNN and the NNN hopping between the pyramids T ′

NNN.
The polaron shift is given by the lattice sum equation (3), which after summation over

polarizations yields

Ep = 2κ2
xω0

∑
m

(
1

|m − n|4 + h2

|m − n|6
)

= 31.15κ2
xω0, (9)

where the factor 2 accounts for two layers of apical sites. For reference, the Cartesian
coordinates are n = (nx +1/2, ny +1/2, 0), m = (mx ,m y, h), and nx , ny,mx ,m y are integers.
The polaron–polaron attraction is

Vph(n − n′) = 4ωκ2
x

∑
m

h2 + (m − n′) · (m − n)
|m − n′|3|m − n|3 . (10)

Performing the lattice summations for the NN, NNN, and NNN′ configurations one finds
Vph = 1.23Ep, 0.80Ep, and 0.82Ep, respectively. As a result, we obtain a net inter-
polaron interaction as vNN = Vc − 1.23Ep, vNNN = Vc√

2
− 0.80Ep, v′

NNN = Vc√
2

− 0.82Ep,

and the mass renormalization exponents as g2
NN = 0.38(Ep/ω), g2

NNN = 0.60(Ep/ω) and
(g′

NNN)
2 = 0.59(Ep/ω).

Let us now discuss different regimes of the model. At Vc > 1.23Ep, no bipolarons
are formed and the system is a polaronic Fermi liquid. Polarons tunnel in the square lattice
with t = TNN exp(−0.38Ep/ω) and t ′ = TNNN exp(−0.60Ep/ω) for NN and NNN hoppings,
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Figure 3. Four degenerate in-plane bipolaron configurations A, B , C , and D. Some single-polaron
hoppings are indicated by arrows [26].

respectively. Since g2
NNN ≈ (g′

NNN)
2 one can neglect the difference between NNN hoppings

within and between the octahedra. A single polaron spectrum is therefore

E1(k) = −Ep − 2t ′[cos kx + cos ky] − 4t cos(kx/2) cos(ky/2). (11)

The polaron mass is m∗ = 1/(t + 2t ′). Since in general t > t ′, the mass is mostly determined
by the NN hopping amplitude t .

If Vc < 1.23Ep then intersite NN bipolarons form. The bipolarons tunnel in the plane
via four resonating (degenerate) configurations A, B , C , and D, as shown in figure 3. In the
first order of the renormalized hopping integral, one should retain only these lowest energy
configurations and discard all the processes that involve configurations with higher energies.
The result of such a projection is the bipolaron Hamiltonian

Hb = (Vc − 3.23Ep)
∑

l

[A†
l Al + B†

l Bl + C†
l Cl + D†

l Dl]

− t ′ ∑
l

[A†
l Bl + B†

l Cl + C†
l Dl + D†

l Al + H.c.]

− t ′ ∑
n

[A†
l−x Bl + B†

l+yCl + C†
l+x Dl + D†

l−y Al + H.c.], (12)

where l numbers octahedra rather than individual sites, x = (1, 0), and y = (0, 1). A Fourier
transformation and diagonalization of a 4 × 4 matrix yields the bipolaron spectrum:

E2(K) = Vc − 3.23Ep ± 2t ′[cos(Kx/2)± cos(Ky/2)]. (13)

There are four bipolaronic subbands combined in the band of the width 8t ′. The effective mass
of the lowest band is m∗∗ = 2/t ′. The bipolaron binding energy is	 ≈ 1.23Ep − Vc. Inter-site
bipolarons already move in the first order of the single polaron hopping. This remarkable
property is entirely due to the strong on-site repulsion and long-range electron–phonon
interactions that leads to a non-trivial connectivity of the lattice. This fact combines with a weak
renormalization of t ′ yielding a superlight bipolaron with the mass m∗∗ ∝ exp(0.60Ep/ω). We
recall that in the Holstein model m∗∗ ∝ exp(2Ep/ω) [18]. Thus the mass of the Fröhlich
bipolaron in the perovskite layer scales approximately as a cubic root of that of the Holstein
bipolaron.

At even stronger e–ph interaction, Vc < 1.16Ep, NNN bipolarons become stable. More
importantly, holes can now form three- and four-particle clusters. The dominance of the
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potential energy over kinetic in the transformed Hamiltonian enables us to readily investigate
these many-polaron cases. Three holes placed within one oxygen square have four degenerate
states with the energy 2(Vc − 1.23Ep) + Vc/

√
2 − 0.80Ep. The first-order polaron hopping

processes mix the states resulting in a ground state linear combination with the energy
E3 = 2.71Vc − 3.26Ep − √

4t2 + t ′2. It is essential that between the squares such triads
could move only in higher orders of polaron hopping. In the first order, they are immobile.
A cluster of four holes has only one state within a square of oxygen atoms. Its energy is
E4 = 4(Vc − 1.23Ep) + 2(Vc/

√
2 − 0.80Ep) = 5.41Vc − 6.52Ep. This cluster, as well as

all bigger ones, is also immobile in the first order of polaron hopping. We would like to stress
that at distances much larger than the lattice constant the polaron–polaron interaction is always
repulsive, and the formation of infinite clusters, stripes or strings is prohibited [37]. Hence
the long-range Fröhlich interaction combined with Coulomb repulsion might cause clustering
of polarons into finite-size quasi-metallic mesoscopic textures. However, analytical [37] and
QMC [38] studies of mesoscopic textures with lattice deformations and Coulomb repulsion
show that pairs (i.e. bipolarons) dominate over phase separation since they effectively repel
each other [3].

As shown above, the FCM is reduced to an extended Hubbard model with intersite
attraction and suppressed double-occupancy in the limit of high phonon frequency ω � T (a)
and large on-site Coulomb repulsion. Then the Hamiltonian can be projected onto the subspace
of nearest neighbour intersite bipolarons, figure 3. In contrast with the crawler motion of on-
site bipolaron, the intersite bipolaron tunnelling is crab-like, so that its mass scales linearly
with the polaron mass (m∗∗ ≈ 4m∗ on the staggered chain [26]). To study the FCM for
more realistic intermediate values of the electron–phonon coupling and phonon frequency
the CTQMC algorithm [32, 39] has been recently extended to systems of two particles with
strong electron–phonon interactions. We have solved the bipolaron problem on a staggered
ladder, triangular and anisotropic hexagonal lattices from weak to strong coupling [33] in a
realistic parameter range where usual limiting approximations fail. The bipolaron to polaron
mass ratio has been found about 2 in the weak coupling regime (λ � 1) as it should be for
a large bipolaron [40]. In the strong-coupling, large phonon frequency limit the mass ratio
approaches 4, in agreement with strong-coupling arguments given above. In a wide region of
parameter space, we find a bipolaron/polaron mass ratio of between 2 and 4 and a bipolaron
radius similar to the lattice spacing. Thus the bipolaron is small and light at the same time.
Taking into account additional intersite Coulomb repulsion Vc does not change this conclusion.
As Vc increases the bipolaron mass decreases but the radius remains small, at about two lattice
spacings.

When bipolarons are small and pairs do not overlap, the pairs can form a Bose–Einstein
condensate. Our CTQMC simulations show that with realistic values for the coupling
constant, λ � 1, and phonon frequencies, ω � T (a) one can avoid overlap of pairs and
get the Bose-condensation temperature Tc about room temperature. We believe that the
following recipe is worth investigating to look for room-temperature superconductivity [33]:
(a) the parent compound should be an ionic insulator with light ions to form high-frequency
optical phonons, (b) the structure should be quasi-two-dimensional to ensure poor screening of
high-frequency c-axis polarized phonons, (c) a triangular lattice is required in combination
with strong, on-site Coulomb repulsion to form the small superlight Crab bipolaron, and
(d) moderate carrier densities are required to keep the system of small bipolarons close to
the dilute regime.

There are strong arguments in favour of 3D bipolaronic BEC in cuprates [3] drawn
using parameter-free fitting of experimental Tc with BEC Tc [41], unusual upper critical
fields [42] and the specific heat [43], and, more recently normal state diamagnetism [44], the

8
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Figure 4. Bipolaron picture of high-temperature superconductors. A corresponds to a singlet
oxygen intersite bipolaron, B is a triplet intersite bipolaron, 	 is the singlet bipolaron binding
energy, J is the singlet–triplet exchange energy, and 2t is the bipolaron bandwidth [50].
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Figure 5. In-plane (A) and out-of-plane (B) resistivity of three single crystals of
Bi2Sr2CaCu2O8 [52] showing no signature of phase fluctuations above the resistive transition.

Hall–Lorenz numbers [45, 46], the normal state Nernst effect [47, 48], and the giant proximity
effect (GPE) [49] as discussed below.

3. Some normal state properties of cuprates in the FCM

3.1. Normal state Nernst effect and insulating-like in-plane resistivity

The low-energy FCM electronic structure of cuprates is shown in figure 4 [50]. Polaronic
p-holes are bound in lattice inter-site singlets (A) or in singlets and triplets (B) (if spins are
included in equation (2)) at any temperature. Above Tc a charged bipolaronic Bose liquid is
non-degenerate and below Tc phase coherence (ODLRO) of the preformed bosons sets in. The
state above Tc is perfectly ‘normal’ in the sense that the off-diagonal order parameter (i.e. the
Bogoliubov–Gor’kov anomalous average F(r, r′) = 〈ψ↓(r)ψ↑(r′〉) is zero above the resistive
transition temperature Tc. Here ψ↓,↑(r) annihilates electrons with spin ↓,↑ at point r.

In contrast with our bipolaronic (and with BCS) theory a significant fraction of research
in the field of cuprate superconductors suggests a so-called phase fluctuation scenario, where
F(r, r′) remains non-zero well above Tc. I believe that the phase fluctuation scenario is
impossible to reconcile with the extremely sharp resistive transitions at Tc in high-quality
underdoped, optimally doped and overdoped cuprates. For example, the in-plane and out-
of-plane resistivity of Bi-2212, where the anomalous Nernst signal has been measured [51],
is perfectly ‘normal’ above Tc, figure 5, showing only a few per cent positive or negative

9



J. Phys.: Condens. Matter 19 (2007) 125216 A S Alexandrov

magnetoresistance [52], explained with bipolarons [53]. Both in-plane [54–58] and out-of-
plane [59–61] resistive transitions of high-quality samples remain sharp in the magnetic field
providing a reliable determination of the genuine Hc2(T ). The preformed Cooper-pair (or phase
fluctuation) model [62] is incompatible with a great number of thermodynamic, magnetic, and
kinetic measurements, which show that only holes (density x), doped into a parent insulator
are carriers both in the normal and the superconducting states of cuprates. The assumption [62]
that the superfluid density x is small compared with the normal-state carrier density is also
inconsistent with the theorem [63], which proves that the number of supercarriers at T = 0 K
should be the same as the number of normal-state carriers in any clean superfluid.

Recently we have described a number of unusual normal state properties in cuprates in
a different manner as perfectly normal state phenomena. In particular, the bipolaron theory
accounts for the anomalously large Nernst signal, the thermopower and the insulating-like in-
plane low-temperature resistance [47, 48] as observed [51, 64–66].

Thermomagnetic effects appear in conductors subjected to a longitudinal temperature
gradient ∇x T in the x direction and a perpendicular magnetic field in the z direction. The
transverse Nernst–Ettingshausen effect [67] (here the Nernst effect) is the appearance of a
transverse electric field Ey in the third direction. When bipolarons are formed in the strong-
coupling regime, the chemical potential is negative. It is found in the impurity band just below
the mobility edge at T > Tc. Carriers, localized below the mobility edge, contribute to the
longitudinal transport together with the itinerant carriers in extended states above the mobility
edge. Importantly the contribution of localized carriers of any statistics to the transverse
transport is normally small [68] since a microscopic Hall voltage will only develop at junctions
in the intersections of the percolation paths, and it is expected that these are few for the case
of hopping conduction among disorder-localized states [69]. Even if this contribution is not
negligible, it adds to the contribution of itinerant carriers to produce a large Nernst signal,
ey(T, B) ≡ −Ey/∇x T , while it reduces the thermopower S and the Hall angle �. This
unusual ‘symmetry breaking’ is completely at variance with ordinary metals where the familiar
‘Sondheimer’ cancelation [70] makes ey much smaller than S tan� because of the electron–
hole symmetry near the Fermi level. Such behaviour originates in the ‘sign’ (or ‘p–n’) anomaly
of the Hall conductivity of localized carriers. The sign of their Hall effect is often opposite to
that of the thermopower as observed in many amorphous semiconductors [68] and described
theoretically [71].

The Nernst signal is expressed in terms of the kinetic coefficients σi j and αi j as

ey = σxxαyx − σyxαxx

σ 2
xx + σ 2

xy

, (14)

where the current density is given by ji = σi j E j +αi j∇ j T . When the chemical potentialμ is at
the mobility edge, localized carriers contribute to the transport, so σi j and αi j can be expressed
as σ ext

i j + σ l
i j and αext

i j + αl
i j , respectively. Since the Hall mobility of carriers localized below μ,

σ l
yx , has the sign opposite to that of carries in the extended states above μ, σ ext

yx , the sign of the
off-diagonal Peltier conductivity αl

yx should be the same as the sign of αext
yx . Then neglecting

the magneto-orbital effects in the resistivity (since � � 1 [51]) we obtain

S tan� ≡ σyxαxx

σ 2
xx + σ 2

xy

≈ ρ(αext
xx − |αl

xx |)(�ext − |�l |) (15)

and

ey ≈ ρ(αext
yx + |αl

yx |)− S tan�, (16)

where �ext ≡ σ ext
yx /σxx , �l ≡ σ l

yx/σxx , and ρ = 1/σxx is the resistivity.

10
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Figure 6. Normal state in-plane resistivity of underdoped La1.94Sr0.06CuO4 (triangles [64]) as
revealed in the field B = 12 T and compared with the bipolaron theory, equation (19) (solid line).

Clearly the model, equations (15), (16), can account for a low value of S tan� compared
with a large value of ey in some underdoped cuprates [51, 65] due to the sign anomaly. Even
in the case when localized bosons contribute little to the conductivity their contribution to
the thermopower S = ρ(αext

xx − |αl
xx |) could almost cancel the opposite sign contribution

of itinerant carriers [47]. Indeed the longitudinal conductivity of itinerant two-dimensional
bosons, σ ext ∝ ∫

0 dE E d f (E)/dE diverges logarithmically when μ in the Bose–Einstein
distribution function f (E) = [exp((E − μ)/T ) − 1]−1 goes to zero and the relaxation time
τ is a constant. At the same time αext

xx ∝ ∫
0 dE E(E − μ) d f (E)/dE remains finite, and it

could have a magnitude comparable with αl
xx . Statistics of bipolarons gradually changes from

Bose to Fermi statistics with lowering energy across the mobility edge because of the Coulomb
repulsion of bosons in localized states [72]. Hence one can use the same expansion near the
mobility edge as in ordinary amorphous semiconductors to obtain the familiar textbook result
S = S0T with a constant S0 at low temperatures [73]. The model becomes particularly simple,
if we neglect the localized carrier contribution to ρ, � and αxy , and take into account that
αext

xy ∝ B/ρ2 and �ext ∝ B/ρ in the Boltzmann theory. Then equations (15), (16) yield

S tan� ∝ T/ρ (17)

and

ey(T, B) ∝ (1 − T/T1)/ρ. (18)

According to our earlier suggestion [74] the insulating-like low-temperature dependence of
ρ(T ) in underdoped cuprates originates from the elastic scattering of non-degenerate itinerant
carriers off charged impurities. We assume here that the carrier density is temperature
independent at very low temperatures. The relaxation time of non-degenerate carriers depends
on temperature as τ ∝ T −1/2 for scattering off short-range deep potential wells, and as T 1/2

for very shallow wells [74]. Combining both scattering rates we obtain

ρ = ρ0[(T/T2)
1/2 + (T2/T )1/2]. (19)

Equation (19) with ρ0 = 0.236 m� cm and T2 = 44.6 K fits extremely well the experimental
insulating-like normal state resistivity of underdoped La1.94Sr0.06CuO4 in the whole low-
temperature range from 2 K up to 50 K, figure 6, as revealed in the field B = 12 T [64, 65].
Another high-quality fit can be obtained combining the Brooks–Herring formula for the 3D

11
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Figure 7. S tan� (circles [65]) and the Nernst effect ey (squares [64]) of underdoped
La1.94Sr0.06CuO4 at B = 12 T compared with the bipolaron theory, equations (20), (21) (solid
lines) [48].

scattering off screened charged impurities, as proposed in [75] for almost undoped LSCO, or
the Coulomb scattering in two dimensions (τ ∝ T ) and a temperature-independent scattering
rate off neutral impurities with the carrier exchange [76] similar to the scattering of slow
electrons by hydrogen atoms in three dimensions. Hence the scale T2, which determines the
crossover toward an insulating behaviour, depends on the relative strength of two scattering
mechanisms. Importantly our expressions (17), (18) for S tan� and ey do not depend on the
particular scattering mechanism. Taking into account the excellent fit of equation (19) to the
experiment, they can be parameterized as

S tan� = e0
(T/T2)

3/2

1 + T/T2
, (20)

and

ey(T, B) = e0
(T1 − T )(T/T2)

1/2

T2 + T
, (21)

where T1 and e0 are temperature independent.
In spite of all simplifications, the model describes remarkably well both S tan� and ey ,

figure 7, measured in La1.94Sr0.06CuO4 with a single fitting parameter, T1 = 50 K using
the experimental ρ(T ). The constant e0 = 2.95 μV K−1 scales the magnitudes of S tan�
and ey . The magnetic field B = 12 T destroys the superconducting state of the low-doped
La1.94Sr0.06CuO4 down to 2 K, figure 6, so any residual superconducting order above 2 K is
clearly ruled out, while the Nernst signal, figure 7, is remarkably large. The coexistence of
the large Nernst signal and a nonmetallic resistivity is in sharp disagreement with the vortex
scenario, but in agreement with our model. Taking into account the phonon-drug effect, field
dependence of the conductivity of localized carriers, and their contribution to the transverse
magneto-transport can well describe the magnetic field dependence of the Nernst signal [47]
and improve the fit in figure 7 at the expense of the increasing number of fitting parameters.

3.2. Hall–Lorenz number

Recent measurements of the Righi–Leduc effect provide further evidence for real-space
charged bosons preformed above Tc [45, 46]. The effect describes transverse heat flow resulting

12



J. Phys.: Condens. Matter 19 (2007) 125216 A S Alexandrov

from a perpendicular temperature gradient in an external magnetic field, which is a thermal
analogue of the Hall effect. Using the effect the ‘Hall–Lorenz’ electronic number, LH =
(e/kB)

2κxy/(Tσxy) has been directly measured [77] in YBa2Cu3O6.95 and YBa2Cu3O6.6 since
transverse thermal κxy and electrical σxy conductivities involve presumably only electrons.
The experimental LH(T ) showed a quasi-linear temperature dependence above the resistive
Tc, which strongly violates the Wiedemann–Franz (WF) law. Remarkably, the measured value
of LH just above Tc turned out precisely the same as predicted by the bipolaron theory [78],
L = 0.15L0, where L0 = π2/3 is the conventional Sommerfeld value. The breakdown of the
WF law revealed in the Righi–Leduc effect [77] has been explained by a temperature-dependent
contribution of thermally excited single polarons to the transverse magneto-transport [45].

Surprisingly, more recent measurements of the Hall–Lorenz number in single crystals of
optimally doped YBa2Cu3O6.95 and optimally doped and underdoped EuBa2Cu3Oy led to an
opposite conclusion [79]. The experimental LH for these samples has turned out only weakly
temperature dependent and exceeding the Sommerfeld value by more than two times in the
whole temperature range from Tc up to room temperature. Following an earlier claim [80],
Matusiak and Wolf [79] have argued that a possible reason for such significant difference
might be that Zhang et al [77] used different samples, one for κxy and another one for σxy

measurements, which makes their results for LH inconsistent.
Actually it has been shown [46] that there is no inconsistency in both LH determinations.

One order of magnitude difference in two independent direct measurements of the normal-
state Hall–Lorenz number is consistently explained by the bipolaron theory [3]. The theory
explains the huge difference in the Hall–Lorenz numbers by taking into account the difference
between the in-plane resistivity of detwinned [77] and twinned [79] single crystals. It fits well
the observed LH(T ) s and explains a sharp Hall-number maximum [79] observed in the normal
state of underdoped cuprates.

In the presence of an electric field E, the temperature gradient ∇T and a weak magnetic
field B ‖ z ⊥ E and ∇T , the electrical currents in the x, y directions are given by

jx = axx∇x(μ− 2eφ)+ axy∇y(μ− 2eφ)+ bxx∇x T + bxy∇y T,

jy = ayy∇y(μ− 2eφ)+ ayx∇x(μ− 2eφ)+ byy∇y T + byx∇x T,
(22)

and the thermal currents are
wx = cxx∇x(μ− 2eφ)+ cxy∇y(μ− 2eφ)+ dxx∇x T + dxy∇y T

wy = cyy∇y(μ− 2eφ)+ cyx∇x(μ− 2eφ)+ dyy∇y T + dyx∇x T .
(23)

Here μ and φ are the chemical and electric potentials.
Real phonons and (bi)polarons are well decoupled in the strong-coupling regime of

the electron–phonon interaction [3] so the standard Boltzmann equation for the kinetics of
renormalized carriers is applied. If we make use of the τ (E)-approximation [81] the kinetic
coefficients of bipolarons are found as [45]

ab
xx = ab

yy = 2enb

mb
〈τb〉,

ab
yx = −ab

xy = 2egb Bnb

mb
〈τ 2

b 〉,

bb
xx = bb

yy = 2enb

T mb
〈(E − μ)τb〉,

bb
yx = −bb

xy = 2egb Bnb

T mb
〈(E − μ)τ 2

b 〉,
and

cb
xx = cb

yy = nb

mb
〈(E + 2eφ)τb〉,

13
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cb
yx = cb

xy

gb Bnb

mb
〈(E + 2eφ)τ 2

b 〉,

db
xx = db

yy = nb

T mb
〈(E + 2eφ)(E − μ)τb〉,

db
yx = −db

xy = gb Bnb

T mb
〈(E + 2eφ)(E − μ)τ 2

b 〉,
where

〈Q(E)〉 =
∫ ∞

0 dE Q(E)E Db(E)∂ fb/∂E∫ ∞
0 dE E Db(E)∂ fb/∂E

, (24)

Db(E) ∝ Ed/2−1 is the density of states of a d-dimensional bipolaron spectrum, E =
K 2/(2mb), gb = 2e/mb, and fb(E) is the equilibrium distribution function. Polaronic
coefficients are obtained by replacing super/subscripts b for p, double elementary charge 2e
for e and μ for μ/2 in all kinetic coefficients, and mb for 2mp in ai j and ci j . The kinetic energy
of bipolarons, E should be replaced by E + T ∗, where E = k2/(2mp) is the polaron kinetic
energy, and T ∗ is half of the bipolaron binding energy (i.e. the pseudogap temperature in the
theory [3]).

The in-plane resistivity, ρ, the Hall number, RH, and the Hall–Lorenz number, LH are
expressed in terms of the kinetic coefficients as ρ−1 = 2eaxx , RH = ayx/2eB(axx)

2, and

LH = e
[
(dyxaxx − cyxbxx )axx − cxx (bxx ayx − byxaxx )

]
2T ayxa2

xx

, (25)

respectively, where a, b, c, d = ap + ab, bp + bb, cp + cb, dp + db.
The in-plane resistivity, the temperature-dependent paramagnetic susceptibility, and the

Hall ratio have been described by the bipolaron model taking into account thermally activated
single polarons [82–85]. The bipolaron model has also offered a simple explanation of
c-axis transport and the anisotropy of cuprates [24, 60, 61, 84]. The crucial point is that
single polarons dominate in c-axis transport at finite temperatures because they are much
lighter than bipolarons in the c-direction. Bipolarons can propagate across the planes only
via a simultaneous two-particle tunnelling, which is much less probable than a single polaron
tunnelling. However, along the planes polarons and inter-site bipolarons propagate with
comparable effective masses (section 2). Hence in the mixture of non-degenerate quasi-two-
dimensional (2D) bosons and thermally excited 3D fermions, only fermions contribute to c-
axis transport, if the temperature is not very low, which leads to the thermally activated c-axis
transport and to the huge anisotropy of cuprates [24].

We have also shown [45] that by the necessary inclusion of thermally activated polarons,
the model predicts a breakdown of the WF law with the small near-linear dependence in
temperature Hall–Lorenz number, as observed experimentally by Zhang et al [77] (see figure 8).
Let us now show that the bipolaron model describes the contrasting observations of [79] as well,
if the ratio of bipolaron and polaron mobilities, α = 2τbmp/τpmb, becomes relatively small.

Both polaronic and bipolaronic carriers are not degenerate above Tc, so the classical
distribution functions, fb = y exp(−E/T ) and fp = y1/2 exp[−(E + T ∗)/T ] are applied
with y = exp(μ/T ). The chemical potential is evaluated using 2nb + np = x/v0, where x is
the number of itinerant holes in the unit cell volume v0 not localized by disorder. The bipolaron
density remains large compared with the polaron density in a wide temperature range, so that
nbv0 ≈ x/2 and y ≈ πx/(mba2T ) for quasi-2D bipolarons. Then the atomic density of 3D
polarons is npv0 = T mpa2 exp(−T ∗/T )(xmp/2π2mb)

1/2 (a is the lattice constant). The ratio
β = np/2nb remains small at any pseudogap temperature T ∗ and any relevant doping level
x > 0.05, β ≈ T exp(−T ∗/T )(18mp/π

2xmb)
1/2/W � 1, if the temperature T is small
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Figure 8. The Hall–Lorenz number LH in underdoped twinned EuBa2Cu3O6.65 (circles) [79]
compared with the theory, equation (28), when α � 1 (upper line), and the significantly different
Hall–Lorenz number in detwinned YBa2Cu3O6.95 (triangles) [77] described by the same theory [45]
with a moderate value of α = 0.44 (lower line).

compared with the polaron bandwidth W = 6/mpa2. Hence, if the mobility ratio α is of
the order of unity, both longitudinal and transverse in-plane magneto-transport is dominated
by bipolarons, which explains a remarkably low LH in high-quality detwinned crystals used
in [77], figure 8.

On the other hand, twinned crystals used in [79] had the in-plane resistivity several times
larger than those of [77] presumably resulting from twin boundaries and long term ageing. The
twin boundaries and other defects are strong scatterers for slow 2D bipolarons, while lighter
quasi-3D polarons are mainly scattered by real optical phonons, which are similar in all crystals.
Hence one can expect that α becomes small in twinned crystals of [79]. If the condition α2 � β

is met, then only polarons contribute to the transverse electric and thermal magneto-transport.
This explains about the same thermal Hall conductivities (κxy ≈ 2.5 × 10−3 B W K−1 m−1

at T = 100 K) dominated by polarons in both crystals of YBa2Cu3O6.95 used in [77] and
in [79], and at the same time a substantial difference of their electrical Hall conductivities, σxy ,
as bipolarons virtually do not contribute to σxy in the twinned samples.

To arrive at simple analytical results and illustrate their quantitative agreement with the
experiment [79] let us assume that α2 � β , but α � β , and neglect an energy dependence of
the transport relaxation rates of all carriers. In such conditions bipolarons do not contribute to
transverse heat and electric flows, but determine the in-plane conductivity. Kinetic responses
are grossly simplified as

ρ = mbv0

2e2xτb
(26)

RH = v0β

exα2
= e3npτ

2
p

m2
p

ρ2, (27)

LH = 4.75 + 3T ∗/T + (T ∗/T )2. (28)

As in the case of α2 � β , discussed in [45], the recombination of a pair of polarons into
bipolaronic bound states at the cold end of the sample results in the breakdown of the WF law, as
described by two temperature-dependent terms in equation (28). The breakdown is reminiscent
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of the one in conventional semiconductors caused by the recombination of electron–hole pairs
at the cold end [81]. However, the temperature dependence and the value of LH(T ) turn out to
be remarkably different. When α2 � β , the Hall–Lorenz number is more than by an order of
magnitude larger than in the opposite regime, α2 � β . It increases with temperature lowering
rather than decreases, fitting well the experimental observation [79] in twinned underdoped
single crystals of EuBa2Cu3O6.65 with T ∗ = 100 K, figure 8. Hence by varying the bipolaron
to polaron mobility ratio, α, the model accounts for qualitatively different behaviours of LH(T )
in twinned and detwinned cuprates.

3.3. Normal state diamagnetism

A number of experiments (see, for example, [66, 86–90] and references therein), including
torque magnetometries, showed enhanced diamagnetism above Tc, which has been explained
as the fluctuation diamagnetism in quasi-2D superconducting cuprates (see, for example [88]).
The data taken at relatively low magnetic fields (typically below 5 T) revealed a crossing point
in the magnetization M(T, B) of most anisotropic cuprates (e.g. Bi-2212), or in M(T, B)/B1/2

of less anisotropic YBCO [87]. The dependence of magnetization (or M/B1/2) on the magnetic
field has been shown to vanish at some characteristic temperature below Tc. However, the data
taken in high magnetic fields (up to 30 T) have shown that the crossing point, anticipated for
low-dimensional superconductors and associated with superconducting fluctuations, does not
explicitly exist in magnetic fields above 5 T [89].

Most surprisingly the torque magnetometry [86, 89] uncovered a diamagnetic signal
somewhat above Tc which increases in magnitude with applied magnetic field. It has been
linked with the Nernst signal and mobile vortexes in the normal state of cuprates [66].
However, apart from the inconsistencies mentioned above, the vortex scenario of the normal-
state diamagnetism is internally inconsistent. Accepting the vortex scenario and fitting the
magnetization data in Bi-2212 with the conventional logarithmic field dependence [66], one
obtains surprisingly high upper critical fields Hc2 > 120 T and a very large Ginzburg-
Landau parameter, κ = λ/ξ > 450 even at temperatures close to Tc. The in-plane low-
temperature magnetic field penetration depth is λ = 200 nm in optimally doped Bi-2212 (see,
for example [91]). Hence the zero-temperature coherence length ξ turns out to be about the
lattice constant, ξ = 0.45 nm, or even smaller. Such a small coherence length rules out the
‘preformed Cooper pairs’ [62], since the pairs are virtually not overlapped at any size of the
Fermi surface in Bi-2212. Moreover the magnetic field dependence of M(T, B) at and above Tc

is entirely inconsistent with what one expects from a vortex liquid. While −M(B) decreases
logarithmically at temperatures well below Tc, the experimental curves [66, 86, 89] clearly
show that −M(B) increases with the field at and above Tc, just opposite to what one could
expect in the vortex liquid. This significant departure from the London liquid behaviour clearly
indicates that the vortex liquid does not appear above the resistive phase transition [86].

Some time ago we explained the anomalous diamagnetism in cuprates as the Landau
normal-state diamagnetism of preformed bosons [92]. The same model predicted the unusual
upper critical field [42] observed in many superconducting cuprates [54–59]. More recently the
model has been extended to high magnetic fields taking into account the magnetic pair-breaking
of singlet bipolarons and the anisotropy of the energy spectrum [44]. When the magnetic field
is applied perpendicular to the copper–oxygen plains the quasi-2D bipolaron energy spectrum
is quantized as Eα = ω(n + 1/2)+ 2tc[1 − cos(Kzd)], where α comprises n = 0, 1, 2, . . . and
in-plane Kx and out-of-plane Kz centre-of-mass quasi-momenta, ω = 2eB/

√
m∗∗

x m∗∗
y , tc and

d are the hopping integral and the lattice period perpendicular to the planes. We assume here
that the spectrum consists of two degenerate branches, so-called ‘x’ and ‘y’ bipolarons, as in
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the case of apex intersite pairs [25] with anisotropic in-plane bipolaron masses m∗∗
x ≡ m and

m∗∗
y ≈ 4m. Expanding the Bose–Einstein distribution function in powers of exp[(μ− E)/T ]

with the negative chemical potential μ one can after summation over n readily obtain the boson
density

nb = 2eB

πd

∞∑
r=1

I0(2tcr/T )
exp[(μ− ω/2 − 2tc)r/T ]

1 − exp(−ωr/T )
, (29)

and the magnetization

M(T, B) = −nbμb + 2eT

πd

∞∑
r=1

I0

(
2tcr

T

)

× exp[(μ− ω/2 − 2tc)r/T ]
1 − exp(−ωr/T )

(
1

r
− ω exp(−ωr/T )

kBT [1 − exp(−ωr/T )]
)
. (30)

Here μb = e/
√

m∗∗
x m∗∗

y and I0(x) is the modified Bessel function. At low temperatures
T → 0 Schafroth’s result [95] is recovered, M(0, B) = −nbμb. The magnetization of
charged bosons is field independent at low temperatures. At high temperatures, T � Tc

the chemical potential has a large magnitude, and we can keep only the terms with r = 1
in equations (29), (30) to obtain M(T, B) = −nbμbω/(6T ) at T � Tc � ω, which is the
familiar Landau orbital diamagnetism of non-degenerate carriers. Here Tc is the Bose–Einstein
condensation temperature Tc = 3.31(nb/2)2/3/(m∗∗

x m∗∗
y m∗∗

c )
1/3, with mc = 1/2|tc|d2.

Comparing with experimental data one has to take into account a temperature and
field depletion of singlets due to their thermal excitations into spin-split triplets and single
polaron states, figure 4. If J < 	/2, triplets mainly contribute to temperature and field
dependences of the singlet bipolaron density near Tc, nb(T, B) = nc[1 − ατ − (B/B∗)2].
Here α = 3(2nct)−1[J (eJ/Tc − 1)−1 − Tc ln(1 − e−J/Tc)], μB B∗ = (2Tcnct)1/2 sinh(J/2Tc),
μB ≈ 0.93 ×10−23 A m−2 is the Bohr magneton, nc is the density of singlets at T = Tc in zero
field, τ = T/Tc − 1, and 2t is the triplet bandwidth. The triplet contribution to diamagnetism
remains negligible compared with the singlet diamagnetism if |1−T/Tc| � J/Tc. Also bosons
localized in a random potential contribute to the diamagnetism. However, their contribution
remains small compared with the extended carrier diamagnetism, if the localization energy
is large compared with T . As a result, equation (30) fits remarkably well the experimental
curves in the critical region of optimally doped Bi-2212, figure 9, with ncμb = 2100 A m−1,
Tc = 90 K, α = 0.62 and B∗ = 56 T, which corresponds to the singlet–triplet exchange energy
J ≈ 20 K.

3.4. Giant proximity effect

Several groups reported that in the Josephson cuprate SNS junctions supercurrent can run
through normal N-barriers thicker than 100 nm in a strong conflict with the standard theoretical
picture, if the barrier is made from non-superconducting cuprates. Using an advanced
molecular beam epitaxy, Bozovic et al [93] proved that this giant proximity effect (GPE) is
intrinsic, rather than extrinsic caused by any inhomogeneity of the barrier. Hence the GPE
defies the conventional explanation, which predicts that the critical current should exponentially
decay with the characteristic length of about the coherence length, which is ξ � 1 nm in the
cuprates.

Here I show that the effect can be broadly understood as the Bose–Einstein condensate
(BEC) tunnelling into a cuprate semiconductor. As mentioned in section 1, the chemical
potential μ remains in the charge-transfer gap of doped cuprates like La2−xSrx CuO4 [7]
because of bipolaron formation. The condensate wavefunction, ψ(Z), is described by the
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Gross–Pitaevskii (GP) equation. In the superconducting region, Z < 0, near the SN boundary,
figure 10, the equation is

1

2m∗∗
c

d2ψ(Z)

dZ 2
= [V |ψ(Z)|2 − μ]ψ(Z), (31)

where V is a short-range repulsion of bosons, and m∗∗
c is the boson mass along Z . Deep inside

the superconductor |ψ(Z)|2 = ns and μ = V ns , where the condensate density ns is about
x/2, if the temperature is well below Tc of the superconducting electrode (the in-plane lattice
constant a and the unit cell volume are taken as unity).

The normal barrier at Z > 0 is an underdoped cuprate semiconductor above its transition
temperature, where the chemical potential μ lies below the bosonic band by some energy ε,
figure 10. One obtains for quasi-two-dimensional bosons [3]

ε = −T ln(1 − e−T0/T ), (32)

where T0 = πx ′/m∗∗, m∗∗ is the in-plane boson mass, and x ′ < x is the doping level of the
barrier. Then the GP equation in the barrier can be written as

1

2m∗∗
c

d2ψ (Z)

dZ 2
= [V |ψ(Z)|2 + ε]ψ(Z). (33)
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Introducing the bulk coherence length, ξ = 1/(2m∗∗
c ns V )1/2 and dimensionless f (z) =

ψ(Z)/n1/2
s , μ̃ = ε/ns V , and z = Z/ξ , one obtains for a real f (z)

d2 f

dz2
= f 3 − f, (34)

if z < 0, and

d2 f

dz2
= f 3 + μ̃ f, (35)

if z > 0. These equations can be readily solved using first integrals of motion respecting the
boundary conditions, f (−∞) = 1, and f (∞) = 0,

d f

dz
= −(1/2 + f 4/2 − f 2)1/2, (36)

and
d f

dz
= −(μ̃ f 2 + f 4/2)1/2, (37)

for z < 0 and z > 0, respectively. The solution in the superconducting electrode is given by

f (z) = tanh

[
−21/2z + 0.5 ln

21/2(1 + μ̃)1/2 + 1

21/2(1 + μ̃)1/2 − 1

]
. (38)

It decays in the close vicinity of the barrier from 1 to f (0) = [2(1 + μ̃)]−1/2 in the interval
about the coherence length ξ . On the other side of the boundary, z > 0, it is given by

f (z) = (2μ̃)1/2

sinh{zμ̃1/2 + ln[2(μ̃(1 + μ̃))1/2 + (1 + 4μ̃(1 + μ̃))1/2]} . (39)

Its profile is shown in figure 10. Remarkably, the order parameter penetrates into the normal
layer up to the length Z∗

≈ (μ̃)−1/2ξ , which could be larger than ξ by many orders of
magnitude, if μ̃ is small. It is indeed the case, if the barrier layer is sufficiently doped. For
example, taking x ′ = 0.1, c-axis m∗∗

c = 2000me, in-plane m∗∗ = 10me [3], a = 0.4 nm, and
ξ = 0.6 nm, yields T0 ≈ 140 K and (μ̃)−1/2 ≈ 5000 at T = 10 K. Hence the order parameter
could penetrate into the normal cuprate semiconductor up to more than a thousand coherence
lengths as observed [93]. If the thickness of the barrier L is small compared with Z∗, and
(μ̃)1/2 � 1, the order parameter decays following the power law, rather than exponentially,

f (z) =
√

2

z + 2
. (40)

Hence, for L � Z∗, the critical current should also decay following the power law [49]. On
the other hand, for an undoped barrier μ̃ becomes larger than unity, μ̃ ∝ ln(m∗∗T/πx ′) → ∞
for any finite temperature T when x ′ → 0, and the current should exponentially decay with the
characteristic length smaller that ξ , as is experimentally observed as well [7].

4. Discussion

A possibility of real-space pairing, as opposed to the Cooper pairing, has been the subject
of many discussions, particularly heated over the last 20 years after the discovery of
high-temperature superconductivity in cuprates. The first proposal for high-temperature
superconductivity, made by Ogg Jr in 1946 [94], already involved real-space pairing of
individual electrons into bosonic molecules with zero total spin. This idea was further
developed as a natural explanation of conventional superconductivity by Schafroth and
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Butler and Blatt [95]. However, with one or two exceptions, the Ogg–Schafroth picture
was condemned and practically forgotten because it neither accounted quantitatively for the
critical behaviour of conventional superconductors, nor did it explain the microscopic nature
of attractive forces which could overcome the Coulomb repulsion between two electrons
constituting a pair. The failure of the ‘bosonic’ picture of individual electron pairs became
fully transparent when Bardeen, Cooper and Schrieffer (BCS) [28] proposed that two electrons
in a superconductor were indeed correlated, but at a very large distance of about 103 times of
the average inter-electron spacing.

Highly successful for low-Tc metals and alloys, the BCS theory has led many researchers
to believe that novel high-temperature superconductors should also be ‘BCS-like’. However,
the Ogg–Schafroth and the BCS descriptions are actually two opposite extremes of the
same electron–phonon interaction. Indeed, by extending the BCS theory towards the strong
interaction between electrons and ion vibrations, a charged Bose gas of tightly bound small
bipolarons was predicted by us [18] with a further prediction that high Tc should exist
in the crossover region of the e–ph interaction strength from the BCS-like to bipolaronic
superconductivity [19].

However, for very strong electron–phonon coupling, polarons become self-trapped on a
single lattice site. The energy of the resulting small polaron is given as Ep = −λzT (a),
where λ is the electron–phonon coupling constant, T (a) is the hopping parameter and z is
the coordination number. Expanding about the atomic limit in small T (a) (which is small
compared to Ep in the small polaron regime, λ > 1) the polaron mass is computed as
m∗ = m0 exp(γ zλ/h̄ω), where ω is the frequency of Einstein phonons, m0 is the rigid-lattice
band mass, and γ is a numerical constant. For the Holstein model, which is purely site local,
γ = 1. Bipolarons are on-site singlets in the Holstein model and their mass m∗∗

H appears
only in the second order of T (a) [18] scaling as m∗∗

H ∝ (m∗)2 in the limit h̄ω � 	, and as
m∗∗

H ∝ (m∗)4 in a more realistic regime h̄ω � 	 [96]. Here 	 = 2Ep − U is the bipolaron
binding energy, and U is the on-site (Hubbard) repulsion. Since the Hubbard U is about 1 eV or
larger in strongly correlated materials, the electron–phonon coupling must be large to stabilize
on-site bipolarons and the Holstein bipolaron mass appears very large, m∗∗

H /m0 > 1000, for
realistic values of phonon frequency.

This estimate led some authors to the conclusion that the formation of itinerant small
polarons and bipolarons in real materials is unlikely [97], and high-temperature bipolaronic
superconductivity is impossible [98]. However, one should note that the Holstein model is an
extreme polaron model, and typically yields the highest possible value of the (bi)polaron mass
in the strong coupling limit. Many advanced materials with low density of free carriers and poor
mobility (at least in one direction) are characterized by poor screening of high-frequency optical
phonons and are more appropriately described by the long-range Fröhlich electron–phonon
interaction [25]. For this interaction the parameter γ is less than 1 (γ ≈ 0.3 on the square
lattice and γ ≈ 0.2 on the triangular lattice), reflecting the fact that in a hopping event the
lattice deformation is partially pre-existent. Hence the unscreened Fröhlich electron–phonon
interaction provides relatively light small polarons, which are several orders of magnitude
lighter than small Holstein polarons, which is now confirmed by several numerical studies
as discussed in section 2.

This unscreened Fröhlich interaction combined with on-site repulsive correlations can bind
holes into superlight intersite bipolarons (section 2). Experimental evidence for exceptionally
strong e–ph interactions is now so overwhelming that the bipolaronic charged Bose gas [3]
could be a feasible alternative to the BCS-like scenarios of cuprates. While some authors [62]
have dismissed any real-space pairing, advocating a collective pairing into incoherent Cooper
pairs in the momentum space at some high temperature T ∗ > Tc, I argue that the most

20



J. Phys.: Condens. Matter 19 (2007) 125216 A S Alexandrov

likely scenario is a true 3D Bose–Einstein condensation at Tc of real-space bipolarons. Our
bipolaron theory predicted such key features of cuprate superconductors as anomalous upper
critical fields, spin and charge pseudogaps, and anomalous isotope effects later discovered
experimentally. The theory explained normal state kinetics, high Tc values, and specific heat
anomalies of cuprates (see [3] and references therein).

Here I have reviewed normal-state diamagnetism, the Nernst, thermal Hall and giant
proximity effects as strong evidence for real-space pairing and 3D BEC in cuprates.
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